5G技術(shù)、AI技術(shù)等新科技與傳統(tǒng)中醫(yī)碰撞會產(chǎn)生怎樣的火花?全國政協(xié)委員,首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院院長劉清泉從自身工作實際出發(fā)談到了AI模型在中醫(yī)藥傳承中的應(yīng)用。他認(rèn)為,傳統(tǒng)的“師帶徒”模式受時間與空間的雙重制約,傳承效率難以滿足當(dāng)下需求。隨著科技賦能,借助AI訓(xùn)練構(gòu)建的中醫(yī)診療思維模型橫空出世。這一創(chuàng)新成果對名老中醫(yī)的寶貴經(jīng)驗進(jìn)行了系統(tǒng)梳理與數(shù)字化呈現(xiàn),可以讓年輕一代中醫(yī)從業(yè)者跨越時空的藩籬,深入研習(xí)這些珍貴經(jīng)驗,傳承效率實現(xiàn)質(zhì)的飛躍,為培育更多優(yōu)秀中醫(yī)人才奠定堅實基礎(chǔ)。
在中醫(yī)藥服務(wù)能力提升層面,5G技術(shù)的深度賦能帶來了顛覆性變革。全國政協(xié)委員、寧夏中醫(yī)醫(yī)院暨中醫(yī)研究院副院長童安榮表示,依托5G技術(shù)的遠(yuǎn)程診療,可以成功打破地域限制。專家們借助高清視頻與智能設(shè)備,能夠遠(yuǎn)程精準(zhǔn)采集患者的面色、舌苔、脈象等關(guān)鍵信息,實現(xiàn)遠(yuǎn)程辨證論治。這舉措讓偏遠(yuǎn)地區(qū)的患者享受到優(yōu)質(zhì)的中醫(yī)診療服務(wù),顯著提升了中醫(yī)藥服務(wù)的可及性與公平性,破解了偏遠(yuǎn)地區(qū)群眾看病難的困局。
全國政協(xié)委員、中國中醫(yī)科學(xué)院望京醫(yī)院黨委書記李浩指出,AI技術(shù)憑借其強(qiáng)大的數(shù)據(jù)處理能力,能夠快速對海量的中醫(yī)藥古籍文獻(xiàn)進(jìn)行深度挖掘,從中探尋潛藏的知識寶藏,為新藥研發(fā)提供源源不斷的靈感源泉。同時,現(xiàn)代科技手段能夠?qū)χ兴幊煞趾退幚磉M(jìn)行深入解析,進(jìn)一步揭示中醫(yī)藥的科學(xué)內(nèi)涵,有力推動中醫(yī)藥與現(xiàn)代醫(yī)學(xué)的深度融合,助力中醫(yī)藥在國際舞臺上贏得更高的認(rèn)可度。
我們也要清醒地認(rèn)識到,中醫(yī)藥與科技的融合目前仍處于探索前行階段,在技術(shù)應(yīng)用等方面尚存在諸多亟待完善之處。在全國政協(xié)委員,中國中醫(yī)科學(xué)院學(xué)部委員唐旭東看來,還需進(jìn)一步加大科研投入力度,積極鼓勵產(chǎn)學(xué)研深度合作,搭建高水平的融合創(chuàng)新平臺,全力攻克關(guān)鍵核心技術(shù)。高校和科研機(jī)構(gòu)應(yīng)緊密結(jié)合時代需求,優(yōu)化課程體系設(shè)置,著力培養(yǎng)復(fù)合型專業(yè)人才,并建立健全人才激勵機(jī)制,吸引更多優(yōu)秀人才投身于中醫(yī)藥事業(yè)發(fā)展之中。
“中醫(yī)藥+科技”是時代賦予的重大機(jī)遇,也是推動中醫(yī)藥事業(yè)高質(zhì)量發(fā)展的必由之路。我們要緊緊抓住科技這一有力翅膀,在傳承中堅守中醫(yī)藥的獨特優(yōu)勢,在創(chuàng)新中實現(xiàn)突破發(fā)展,讓中醫(yī)藥在新時代綻放出更加璀璨的光芒。(來源:中國中醫(yī)藥報 記者 李娜)
]]>近日,據(jù)媒體報道,美國華盛頓大學(xué)戴維·貝克教授團(tuán)隊在《細(xì)胞》雜志上發(fā)表論文,利用人工智能(AI)技術(shù)平臺精準(zhǔn)地從頭設(shè)計出能夠穿過細(xì)胞膜的大環(huán)多肽分子,開辟了設(shè)計全新口服藥物的新途徑。
近年來,AI加速助力新藥研發(fā),幾乎參與了從藥物靶點發(fā)現(xiàn)到臨床試驗的全流程。在新冠肺炎疫情期間,多款藥物問世背后也都有AI的身影,全球AI制藥產(chǎn)業(yè)實現(xiàn)加速跑。
AI融入藥物研發(fā)各個環(huán)節(jié)
“AI一詞是約翰·麥卡錫在1956年達(dá)特茅斯會議上提出的,用來描述‘制造智能機(jī)器的科學(xué)和工程’。AI差不多也是在這個時候被引入到藥物研發(fā)領(lǐng)域的。”南開大學(xué)藥學(xué)院教授林建平介紹,1964年,定量構(gòu)效關(guān)系建模領(lǐng)域的建立成為AI開始用于藥物研發(fā)的標(biāo)志。
如今,AI在藥物研發(fā)中發(fā)揮著越來越重要的作用,并與藥物研發(fā)的各個環(huán)節(jié)緊密結(jié)合。
一款藥物從無到有,要歷經(jīng)漫長且坎坷的過程。其中主要包括4個研發(fā)階段,即靶標(biāo)選擇和驗證、化合物篩選和先導(dǎo)優(yōu)化、臨床前研究以及臨床試驗。而每一個階段又涉及到許多具體環(huán)節(jié)。
林建平舉例說,比如在靶標(biāo)選擇和驗證階段,需要確定疾病相關(guān)的靶標(biāo)。根據(jù)傳統(tǒng)實驗去確定靶標(biāo),既費時成本又高,而使用AI技術(shù)并結(jié)合已有的組學(xué)大數(shù)據(jù),根據(jù)已知的以及新產(chǎn)生的實驗數(shù)據(jù),就可以快速分析出潛在候選靶標(biāo),節(jié)約時間和成本;或在已知先導(dǎo)化合物的功效,但是缺少明確靶標(biāo)而導(dǎo)致具體作用機(jī)制和副作用不明確時,AI可以大范圍預(yù)測靶標(biāo),縮小候選靶標(biāo)的范圍,最后結(jié)合實驗手段快速定位真正的靶標(biāo)?!癆I幫助藥物研發(fā)者快速找到靶標(biāo),加快先導(dǎo)化合物向藥物轉(zhuǎn)化的進(jìn)程。”林建平介紹。
對于已有的藥物,AI同樣可以通過靶標(biāo)預(yù)測,發(fā)現(xiàn)新的靶標(biāo),從而發(fā)現(xiàn)新的藥物適應(yīng)癥,這也是一個非常熱門的領(lǐng)域——藥物重定位。
在最重要的臨床試驗階段,AI的應(yīng)用也起到了事半功倍的效果?!霸谶@一階段,需要在患者身上評價藥物的安全性和有效性,AI可以參與到患者的招募、臨床試驗設(shè)計以及試驗結(jié)果數(shù)據(jù)分析等?!绷纸ㄆ脚e例,比如可以通過AI技術(shù)從過去的臨床患者中,提取患者的個人特征、癥狀、治療效果等數(shù)據(jù),找到最匹配當(dāng)前試驗的患者;試驗設(shè)計上,AI可以預(yù)測合適的藥物劑量、治療方案等;而試驗數(shù)據(jù)上,可以采用AI技術(shù)跟蹤和管理患者的實時情況,預(yù)測患者預(yù)后情況等。
AI大大縮減藥物研發(fā)成本
一個新藥的誕生,通常需投入10億甚至數(shù)10億美元,研發(fā)周期一般超過10年,成功率卻低于10%。而由于AI的加入,如今的藥物研發(fā)成本減少了上億美元,同時也大大縮短了研發(fā)時間,一般來說可以縮短一半以上。例如,AI將臨床前候選化合物的研發(fā)時間從平均4年半縮短至約13.7個月,縮短了近75%。
此外,AI還提高了藥物研發(fā)的成功率?!巴ㄋ字v,藥物研發(fā)實際上是一個試錯的過程,AI可以幫助我們排除大量錯誤,最后留給我們的就是更大的成功機(jī)會?!绷纸ㄆ秸f。
正是由于AI制藥具有對傳統(tǒng)制藥碾壓式的優(yōu)勢,使得AI制藥產(chǎn)業(yè)在全球發(fā)展壯大。目前,AI制藥產(chǎn)業(yè)發(fā)展可概括為三大階段:第一個階段,AI制藥公司初步形成,主要針對某個階段的藥物研發(fā)提供AI技術(shù)服務(wù);第二個階段,AI制藥公司開發(fā)了成熟的研發(fā)管線,并且開發(fā)的藥物進(jìn)入臨床驗證,這一階段將吸引大量資本和初創(chuàng)企業(yè)加入;而第三階段,則進(jìn)入到關(guān)鍵的臨床Ⅱ期藥效性實驗,真正證明AI研發(fā)藥物的有效性。
“目前全球AI制藥產(chǎn)業(yè)已步入第三個發(fā)展階段?!绷纸ㄆ秸f。
我國AI制藥起步較晚,尚處于第二個階段。“但是國內(nèi)的AI制藥產(chǎn)業(yè)發(fā)展速度非???,各大互聯(lián)網(wǎng)巨頭以及一些大型藥企均開始布局AI制藥賽道,當(dāng)然還包括一些初創(chuàng)公司。”林建平表示。
據(jù)統(tǒng)計,目前國內(nèi)已有超過60家AI制藥公司,去年我國AI制藥融資規(guī)模達(dá)12.36億美元,同比增長163.54%。
AI制藥存在諸多挑戰(zhàn)
可以說,AI已經(jīng)滲透到藥物研發(fā)領(lǐng)域的各個環(huán)節(jié),促進(jìn)了醫(yī)藥產(chǎn)業(yè)的升級,在未來極有可能帶來制藥產(chǎn)業(yè)的變革。隨著目前AI制藥產(chǎn)業(yè)的發(fā)展,在不久的將來,我們可能很快會迎來第一款A(yù)I技術(shù)研發(fā)的創(chuàng)新藥物。在期盼之余,很多人也對AI研發(fā)的藥物是否具有風(fēng)險心存疑慮。
“目前來說,我們利用AI研發(fā)的藥物的風(fēng)險與傳統(tǒng)的藥物研發(fā)風(fēng)險是一樣的,包括藥物的副作用、毒性、耐受性等。”林建平解釋說,由于目前AI在藥物研發(fā)中大多起著輔助作用,最后仍舊需要經(jīng)過真實的試驗去驗證其安全性和有效性,需要專家去做評定,所以在風(fēng)險性上與傳統(tǒng)研發(fā)藥物相同。但是這樣做也帶來了另一個問題,制藥行業(yè)仍以專家經(jīng)驗為基礎(chǔ),成為制約AI制藥發(fā)展的最大阻礙?!爸猿霈F(xiàn)這種現(xiàn)象,主要是由于對AI技術(shù)助力制藥的不信任?!绷纸ㄆ秸J(rèn)為,隨著接下來幾年AI藥物的成功上市,這個問題必將得到解決;另一方面,目前AI在藥物研發(fā)全流程中,仍然扮演著輔助工具的角色,沒有占據(jù)主導(dǎo)地位,這也就決定了AI制藥產(chǎn)業(yè)難以獲得飛躍式發(fā)展。
而且,AI技術(shù)仍在發(fā)展中,數(shù)據(jù)、算法、算力上的突破也需要一定的時間。如數(shù)據(jù)量不足、數(shù)據(jù)質(zhì)量參差不齊,算法精度不高、算法無法滿足需求等,都為AI在藥物研發(fā)和應(yīng)用上帶來了困難。
此外,AI制藥還面臨許多其他挑戰(zhàn)。比如生命領(lǐng)域的基礎(chǔ)理論研究還有很多沒有解決的問題;再比如復(fù)合型人才的缺少,“懂計算的不懂制藥,懂制藥的不懂計算”,如何更好地把生物問題轉(zhuǎn)化為計算問題,然后用數(shù)字手段去解決,這需要大量復(fù)合型人才的參與,而這一類人才的培養(yǎng)也是極其耗時的。
]]>